Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Nutrients ; 12(6)2020 Jun 10.
Article in English | MEDLINE | ID: covidwho-1725886

ABSTRACT

Infection caused by the SARS-CoV-2 coronavirus worldwide has led the World Health Organization to declare a COVID-19 pandemic. Because there is no cure or treatment for this virus, it is emergingly urgent to find effective and validated methods to prevent and treat COVID-19 infection. In this context, alternatives related to nutritional therapy might help to control the infection. This narrative review proposes the importance and role of probiotics and diet as adjunct alternatives among the therapies available for the treatment of this new coronavirus. This review discusses the relationship between intestinal purine metabolism and the use of Lactobacillus gasseri and low-purine diets, particularly in individuals with hyperuricemia, as adjuvant nutritional therapies to improve the immune system and weaken viral replication, assisting in the treatment of COVID-19. These might be promising alternatives, in addition to many others that involve adequate intake of vitamins, minerals and bioactive compounds from food.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/therapy , Diet/methods , Immunomodulation/physiology , Pneumonia, Viral/therapy , Probiotics/therapeutic use , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/microbiology , Humans , Lactobacillus gasseri/immunology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/microbiology , Purines/immunology , Purines/metabolism , SARS-CoV-2 , Virus Replication/immunology
3.
Biosci Rep ; 41(3)2021 03 26.
Article in English | MEDLINE | ID: covidwho-1392910

ABSTRACT

Experimental experience suggests that microbial agents including probiotics and prebiotics (representative microbial agents) play a critical role in defending against respiratory virus infection. We aim to systematically examine these agents' effect on respiratory viral infection and encourage research into clinical applications. An electronic literature search was conducted from published data with a combination of a microbial agents search component containing synonyms for microbial agents-related terms and a customized search component for respiratory virus infection. Hazard ratio (HR), risk ratio (RR) and standard deviation (SD) were employed as effect estimates. In 45 preclinical studies, the mortality rates decreased in the respiratory viral infection models that included prebiotics or prebiotics as interventions (HR: 0.70; 95% confidence interval (CI): 0.56-0.87; P=0.002). There was a significant decrease in viral load due to improved gut microbiota (SD: -1.22; 95% CI: -1.50 to -0.94; P<0.001). Concentrations of interferon (IFN)-α (SD: 1.05; 95% CI: 0.33-1.77; P=0.004), IFN-γ (SD: 0.83; 95% CI: 0.01-1.65; P=0.05) and interleukin (IL)-12 (SD: 2.42; 95% CI: 0.32-4.52; P=0.02), IL-1ß (SD: 0.01; 95% CI: -0.37 to 0.40; P=0.94) increased, whereas those of TNF-α (SD: -0.58; 95% CI: -1.59 to 0.43; P=0.26) and IL-6 (SD: -0.59; 95% CI: -1.24 to 0.07; P=0.08) decreased. Six clinical studies had lower symptom scores (SD: -0.09; 95% CI: -0.44 to 0.26; P=0.61) and less incidence of infection (RR: 0.80; 95% CI: 0.64-1.01; P=0.06). Our research indicates that probiotics and prebiotics pose a defensive possibility on respiratory viral infection and may encourage the clinical application.


Subject(s)
Common Cold/microbiology , Orthomyxoviridae Infections/microbiology , Pneumonia, Viral/microbiology , Prebiotics/administration & dosage , Probiotics/therapeutic use , Animals , Common Cold/therapy , Gastrointestinal Microbiome , Humans , Interferons/metabolism , Interleukins/metabolism , Mice , Orthomyxoviridae Infections/therapy , Pneumonia, Viral/therapy
4.
Adv Drug Deliv Rev ; 176: 113811, 2021 09.
Article in English | MEDLINE | ID: covidwho-1239473

ABSTRACT

Pneumonia is among the leading causes of morbidity and mortality worldwide. Due to constant evolution of respiratory bacteria and viruses, development of drug resistance and emerging pathogens, it constitutes a considerable health care threat. To enable development of novel strategies to control pneumonia, a better understanding of the complex mechanisms of interaction between host cells and infecting pathogens is vital. Here, we review the roles of host cell and bacterial-derived extracellular vesicles (EVs) in these interactions. We discuss clinical and experimental as well as pathogen-overarching and pathogen-specific evidence for common viral and bacterial elicitors of community- and hospital-acquired pneumonia. Finally, we highlight the potential of EVs for improved management of pneumonia patients and discuss the translational steps to be taken before they can be safely exploited as novel vaccines, biomarkers, or therapeutics in clinical practice.


Subject(s)
Extracellular Vesicles/metabolism , Pneumonia, Bacterial/microbiology , Pneumonia, Viral/microbiology , Animals , Community-Acquired Infections/microbiology , Community-Acquired Infections/therapy , Drug Resistance, Microbial , Healthcare-Associated Pneumonia/microbiology , Healthcare-Associated Pneumonia/therapy , Host Microbial Interactions , Humans , Pneumonia, Bacterial/therapy , Pneumonia, Viral/therapy
5.
Rofo ; 193(9): 1081-1091, 2021 09.
Article in English | MEDLINE | ID: covidwho-1152922

ABSTRACT

PURPOSE: To determine the performance of radiologists with different levels of expertise regarding the differentiation of COVID-19 from other atypical pneumonias. Chest CT to identify patients suffering from COVID-19 has been reported to be limited by its low specificity for distinguishing COVID-19 from other atypical pneumonias ("COVID-19 mimics"). Meanwhile, the understanding of the morphologic patterns of COVID-19 has improved and they appear to be fairly specific. MATERIALS AND METHODS: Between 02/2020 and 04/2020, 60 patients with COVID-19 pneumonia underwent chest CT in our department. Cases were matched with a comparable control group of 60 patients of similar age, sex, and comorbidities, who underwent chest CT prior to 01/2020 for atypical pneumonia caused by other pathogens. Included were other viral, fungal, and bacterial pathogens. All 120 cases were blinded to patient history and were reviewed independently by two radiologists and two radiology residents. Readers rated the probability of COVID-19 pneumonia according to the COV-RADS classification system. Results were analyzed using Clopper-Pearson 95 % confidence intervals, Youden's Index for test quality criteria, and Fleiss' kappa statistics. RESULTS: Overall, readers were able to correctly identify the presence of COVID-19 pneumonia in 219/240 (sensitivity: 91 %; 95 %-CI; 86.9 %-94.5 %), and to correctly attribute CT findings to COVID-19 mimics in 159/240 ratings (specificity: 66.3 %; 59.9 %-72.2 %), yielding an overall diagnostic accuracy of 78.8 % (378/480; 74.8 %-82.3 %). Individual reader accuracy ranged from 74.2 % (89/120) to 84.2 % (101/120) and did not correlate significantly with reader expertise. Youden's Index was 0.57. Between-reader agreement was moderate (κ = 0.53). CONCLUSION: In this enriched cohort, radiologists were able to distinguish COVID-19 from "COVID-19 mimics" with moderate diagnostic accuracy. Accuracy did not correlate with reader expertise. KEY POINTS: · In a scenario of direct comparison (no negative findings), CT allows the differentiation of COVID-19 from other atypical pneumonias ("COVID mimics") with moderate accuracy.. · Reader expertise did not significantly influence these results.. · Despite similar patterns and distributions of pulmonary findings, radiologists were able to estimate the probability of COVID-19 pneumonia using the COV-RADS classification in a standardized manner in the larger proportion of cases.. CITATION FORMAT: · Sähn M, Yüksel C, Keil S et al. Accuracy of Chest CT for Differentiating COVID-19 from COVID-19 Mimics. Fortschr Röntgenstr 2021; 193: 1081 - 1091.


Subject(s)
COVID-19/diagnostic imaging , Clinical Competence , Pneumonia, Viral/diagnostic imaging , Pneumonia, Viral/microbiology , Tomography, X-Ray Computed/methods , Adult , Aged , Case-Control Studies , Diagnosis, Differential , Female , Humans , Male , Middle Aged , SARS-CoV-2 , Sensitivity and Specificity
6.
PLoS One ; 16(3): e0238825, 2021.
Article in English | MEDLINE | ID: covidwho-1138567

ABSTRACT

BACKGROUND: Superinfections, including invasive pulmonary aspergillosis (IPA), are well-known complications of critically ill patients with severe viral pneumonia. Aim of this study was to evaluate the incidence, risk factors and outcome of IPA in critically ill patients with severe COVID-19 pneumonia. METHODS: We prospectively screened 32 critically ill patients with severe COVID-19 pneumonia for a time period of 28 days using a standardized study protocol for oberservation of developement of COVID-19 associated invasive pulmonary aspergillosis (CAPA). We collected laboratory, microbiological, virological and clinical parameters at defined timepoints in combination with galactomannan-antigen-detection from nondirected bronchial lavage (NBL). We used logistic regression analyses to assess if COVID-19 was independently associated with IPA and compared it with matched controls. FINDINGS: CAPA was diagnosed at a median of 4 days after ICU admission in 11/32 (34%) of critically ill patients with severe COVID-19 pneumonia as compared to 8% in the control cohort. In the COVID-19 cohort, mean age, APACHE II score and ICU mortality were higher in patients with CAPA than in patients without CAPA (36% versus 9.5%; p<0.001). ICU stay (21 versus 17 days; p = 0.340) and days of mechanical ventilation (20 versus 15 days; p = 0.570) were not different between both groups. In regression analysis COVID-19 and APACHE II score were independently associated with IPA. INTERPRETATION: CAPA is highly prevalent and associated with a high mortality rate. COVID-19 is independently associated with invasive pulmonary aspergillosis. A standardized screening and diagnostic approach as presented in our study can help to identify affected patients at an early stage.


Subject(s)
COVID-19/complications , Invasive Pulmonary Aspergillosis/etiology , Pneumonia, Viral/complications , Adult , Aged , Aged, 80 and over , Bronchoalveolar Lavage Fluid/microbiology , Bronchoalveolar Lavage Fluid/virology , COVID-19/microbiology , COVID-19/virology , Critical Illness , Female , Galactose/analogs & derivatives , Humans , Intensive Care Units , Invasive Pulmonary Aspergillosis/microbiology , Invasive Pulmonary Aspergillosis/virology , Male , Mannans/metabolism , Middle Aged , Pneumonia, Viral/microbiology , Pneumonia, Viral/virology , Prospective Studies , Respiration, Artificial/methods , SARS-CoV-2/pathogenicity , Superinfection/etiology , Superinfection/microbiology
7.
J Glob Health ; 10(2): 020504, 2020 12.
Article in English | MEDLINE | ID: covidwho-1106353

ABSTRACT

BACKGROUND: We are communicating the results of investigating statistics on SARS-CoV-2-related pneumonias in Russia: percentage, mortality, cases with other viral agents, cases accompanied by secondary bacterial pneumonias, age breakdown, clinical course and outcome. METHODS: We studied two sampling sets (Set 1 and Set 2). Set 1 consisted of results of testing 3382 assays of out-patients and hospital patients (5-88 years old) with community-acquired and hospital-acquired pneumonia of yet undetermined aetiology. Set 2 contained results of 1204 assays of hospital patients (12-94 years old) with pneumonia and COVID-19 already diagnosed by molecular biological techniques in test laboratories. The results were collected in twelve Russian cities/provinces in time range 2 March - 5 May 2020. Assays were analysed for 10 bacterial, 15 viral, 2 fungal and 2 parasitic aetiological agents. RESULTS: In Set 1, 4.35% of total pneumonia cases were related to SARS-CoV-2, with substantially larger proportion (18.75%) of deaths of pneumonia with COVID-19 diagnosed. However, studying Set 2, we revealed that 52.82% patients in it were also positive for different typical and atypical aetiological agents usually causing pneumonia. 433 COVID-19 patients (35.96%) were tested positive for various bacterial aetiological agents, with Streptococcus pneumoniae, Staphylococcus aureus and Haemophilus influenzae infections accounting for the majority of secondary pneumonia cases. CONCLUSIONS: SARS-CoV-2, a low-pathogenic virus itself, becomes exceptionally dangerous if secondary bacterial pneumonia attacks a COVID-19 patient as a complication. An essential part of the severest complications and mortality associated with COVID-19 in Russia in March-May 2020, may be attributed to secondary bacterial pneumonia and to a much less extent viral co-infections. The problem of hospital-acquired bacterial infection is exceptionally urgent in treating SARS-CoV-2 patients. The risk of secondary bacterial pneumonia and its further complications, should be given very serious attention in combating SARS-CoV-2.


Subject(s)
Betacoronavirus , Coinfection/mortality , Coronavirus Infections/mortality , Healthcare-Associated Pneumonia/mortality , Pneumonia, Bacterial/mortality , Pneumonia, Viral/mortality , Virus Diseases/mortality , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Child , Child, Preschool , Coinfection/microbiology , Coronavirus Infections/microbiology , Female , Healthcare-Associated Pneumonia/microbiology , Humans , Male , Middle Aged , Pandemics , Pneumonia, Bacterial/microbiology , Pneumonia, Viral/microbiology , Russia/epidemiology , SARS-CoV-2 , Virus Diseases/microbiology , Young Adult
8.
Int J Immunopathol Pharmacol ; 34: 2058738420961304, 2020.
Article in English | MEDLINE | ID: covidwho-1067161

ABSTRACT

COVID-19 is a viral pandemic that primarily manifests with respiratory distress but may also lead to symptoms and signs associated with the gastrointestinal tract. It is characteristically associated with a hyper-immune response, also referred to as a 'cytokine storm'. Probiotics are living microorganisms that have been shown to have positive effects on immune response in man with some bacteria; some strains of Bifidobacteria, for example, possess especially potent immune modulating effects. These bacteria have the potential to ameliorate the 'cytokine storm' through a differential effect on pro- and anti-inflammatory cytokines. In the management of COVID-19 and other coronovirus-mediated illnesses, probiotic bacteria also have the potential to enhance vaccine efficacy.


Subject(s)
Bifidobacterium , Coronavirus Infections/therapy , Pneumonia, Viral/therapy , Probiotics/therapeutic use , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/microbiology , Gastrointestinal Microbiome , Humans , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/microbiology
9.
Molecules ; 25(21)2020 Oct 22.
Article in English | MEDLINE | ID: covidwho-983191

ABSTRACT

Inflammation is a biological response to the activation of the immune system by various infectious or non-infectious agents, which may lead to tissue damage and various diseases. Gut commensal bacteria maintain a symbiotic relationship with the host and display a critical function in the homeostasis of the host immune system. Disturbance to the gut microbiota leads to immune dysfunction both locally and at distant sites, which causes inflammatory conditions not only in the intestine but also in the other organs such as lungs and brain, and may induce a disease state. Probiotics are well known to reinforce immunity and counteract inflammation by restoring symbiosis within the gut microbiota. As a result, probiotics protect against various diseases, including respiratory infections and neuroinflammatory disorders. A growing body of research supports the beneficial role of probiotics in lung and mental health through modulating the gut-lung and gut-brain axes. In the current paper, we discuss the potential role of probiotics in the treatment of viral respiratory infections, including the COVID-19 disease, as major public health crisis in 2020, and influenza virus infection, as well as treatment of neurological disorders like multiple sclerosis and other mental illnesses.


Subject(s)
Coronavirus Infections/therapy , Influenza, Human/therapy , Mental Disorders/therapy , Multiple Sclerosis/therapy , Pneumonia, Viral/therapy , Probiotics/therapeutic use , Respiratory Tract Infections/therapy , Betacoronavirus/drug effects , Betacoronavirus/pathogenicity , Betacoronavirus/physiology , Brain/immunology , COVID-19 , Coronavirus Infections/immunology , Coronavirus Infections/microbiology , Coronavirus Infections/virology , Gastrointestinal Microbiome/immunology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/microbiology , Humans , Immunomodulation , Influenza, Human/immunology , Influenza, Human/microbiology , Influenza, Human/virology , Lung/immunology , Mental Disorders/immunology , Mental Disorders/microbiology , Microbial Consortia/immunology , Multiple Sclerosis/immunology , Multiple Sclerosis/microbiology , Orthomyxoviridae/drug effects , Orthomyxoviridae/pathogenicity , Orthomyxoviridae/physiology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/microbiology , Pneumonia, Viral/virology , Respiratory Tract Infections/immunology , Respiratory Tract Infections/microbiology , SARS-CoV-2 , Symbiosis/immunology
10.
Viruses ; 12(10)2020 10 10.
Article in English | MEDLINE | ID: covidwho-983008

ABSTRACT

Herd immunity is the most critical and essential prophylactic intervention that delivers protection against infectious diseases at both the individual and community level. This process of natural vaccination is immensely pertinent to the current context of a pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection around the globe. The conventional idea of herd immunity is based on efficient transmission of pathogens and developing natural immunity within a population. This is entirely encouraging while fighting against any disease in pandemic circumstances. A spatial community is occupied by people having variable resistance capacity against a pathogen. Protection efficacy against once very common diseases like smallpox, poliovirus or measles has been possible only because of either natural vaccination through contagious infections or expanded immunization programs among communities. This has led to achieving herd immunity in some cohorts. The microbiome plays an essential role in developing the body's immune cells for the emerging competent vaccination process, ensuring herd immunity. Frequency of interaction among microbiota, metabolic nutrients and individual immunity preserve the degree of vaccine effectiveness against several pathogens. Microbiome symbiosis regulates pathogen transmissibility and the success of vaccination among different age groups. Imbalance of nutrients perturbs microbiota and abrogates immunity. Thus, a particular population can become vulnerable to the infection. Intestinal dysbiosis leads to environmental enteropathy (EE). As a consequence, the generation of herd immunity can either be delayed or not start in a particular cohort. Moreover, disparities of the protective response of many vaccines in developing countries outside of developed countries are due to inconsistencies of healthy microbiota among the individuals. We suggested that pan-India poliovirus vaccination program, capable of inducing herd immunity among communities for the last 30 years, may also influence the inception of natural course of heterologous immunity against SARS-CoV-2 infection. Nonetheless, this anamnestic recall is somewhat counterintuitive, as antibody generation against original antigens of SARS-CoV-2 will be subdued due to original antigenic sin.


Subject(s)
Immunity, Herd , Microbiota , Virus Diseases/immunology , Virus Diseases/microbiology , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/microbiology , Coronavirus Infections/transmission , Dysbiosis/immunology , Humans , Immunity, Heterologous , Immunity, Innate , Microbiota/immunology , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/microbiology , Pneumonia, Viral/transmission , SARS-CoV-2 , Vaccination , Virus Diseases/epidemiology , Virus Diseases/transmission
12.
Anal Chem ; 92(19): 13396-13404, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-933642

ABSTRACT

Rapid, accurate, reliable, and risk-free tracking of pathogenic microorganisms at the single-cell level is critical to achieve efficient source control and prevent outbreaks of microbial infectious diseases. For the first time, we report a promising approach for integrating the concepts of a remarkably large Stokes shift and dual-recognition into a single matrix to develop a pathogenic microorganism stimuli-responsive ratiometric fluorescent nanoprobe with speed, cost efficiency, stability, ultrahigh specificity, and sensitivity. As a proof-of-concept, we selected the Gram-positive bacterium Staphylococcus aureus (S. aureus) as the target analyte model, which easily bound to its recognition aptamer and the broad-spectrum glycopeptide antibiotic vancomycin (Van). To improve the specificity and short sample-to-answer time, we employed classic noncovalent π-π stacking interactions as a driving force to trigger the binding of Van and aptamer dual-functionalized near-infrared (NIR) fluorescent Apt-Van-QDs to the surface of an unreported blue fluorescent π-rich electronic carbon nanoparticles (CNPs), achieving S. aureus stimuli-responsive ratiometric nanoprobe Apt-Van-QDs@CNPs. In the assembly of Apt-Van-QDs@CNPs, the blue CNPs (energy donor) and NIR Apt-Van-QDs (energy acceptor) became close to allow the fluorescence resonance energy transfer (FRET) process, leading to a remarkable blue fluorescence quenching for the CNPs at ∼465 nm and a clear NIR fluorescence enhancement for Apt-Van-QDs at ∼725 nm. In the presence of S. aureus, the FRET process from CNPs to Apt-Van-QDs was disrupted, causing the nanoprobe Apt-Van-QDs@CNPs to display a ratiometric fluorescent response to S. aureus, which exhibited a large Stokes shift of ∼260 nm and rapid sample-to-answer detection time (∼30.0 min). As expected, the nanoprobe Apt-Van-QDs@CNPs showed an ultrahigh specificity for ratiometric fluorescence detection of S. aureus with a good detection limit of 1.0 CFU/mL, allowing the assay at single-cell level. Moreover, we also carried out the precise analysis of S. aureus in actual samples with acceptable results. We believe that this work offers new insight into the rational design of efficient ratiometric nanoprobes for rapid on-site accurate screening of pathogenic microorganisms at the single-cell level in the early stages, especially during the worldwide spread of COVID-19 today.


Subject(s)
Bacteria/chemistry , Bacterial Infections/diagnosis , Bacterial Infections/microbiology , Biosensing Techniques/methods , Fluorescent Dyes/chemical synthesis , Nanotechnology/methods , Anti-Bacterial Agents/pharmacology , Aptamers, Nucleotide , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/microbiology , Fluorescence , Fluorescence Resonance Energy Transfer , Food Microbiology/methods , Humans , Nanoparticles , Pandemics , Pneumonia, Viral/complications , Pneumonia, Viral/microbiology , Sensitivity and Specificity , Spectroscopy, Near-Infrared , Staphylococcal Infections/diagnosis , Staphylococcal Infections/microbiology , Staphylococcus aureus/chemistry , Vancomycin/pharmacology
13.
J Transl Med ; 18(1): 415, 2020 11 07.
Article in English | MEDLINE | ID: covidwho-916349

ABSTRACT

On December 12, 2019 a new coronavirus (SARS-CoV-2) emerged in Wuhan, China, triggering a pandemic of severe acute respiratory syndrome in humans (COVID-19). Today, the scientific community is investing all the resources available to find any therapy and prevention strategies to defeat COVID-19. In this context, immunonutrition can play a pivotal role in improving immune responses against viral infections. Immunonutrition has been based on the concept that malnutrition impairs immune function. Therefore, immunonutrition involves feeding enriched with various pharmaconutrients (Omega 3 Fatty Acids, Vitamin C, Arginine, Glutamine, Selenium, Zinc, Vitamin, E and Vitamin D) to modulate inflammatory responses, acquired immune response and to improve patient outcomes. In literature, significant evidences indicate that obesity, a malnutrition state, negatively impacts on immune system functionality and on host defense, impairing protection from infections. Immunonutrients can promote patient recovery by inhibiting inflammatory responses and regulating immune function. Immune system dysfunction is considered to increase the risk of viral infections, such as SARS-CoV-2, and was observed in different pathological situations. Obese patients develop severe COVID-19 sequelae, due to the high concentrations of TNF-α, MCP-1 and IL-6 produced in the meantime by visceral and subcutaneous adipose tissue and by innate immunity. Moreover, leptin, released by adipose tissue, helps to increase inflammatory milieu with a dysregulation of the immune response. Additionally, gut microbiota plays a crucial role in the maturation, development and functions of both innate and adaptive immune system, as well as contributing to develop obese phenotype. The gut microbiota has been shown to affect lung health through a vital crosstalk between gut microbiota and lungs, called the "gut-lung axis". This axis communicates through a bi-directional pathway in which endotoxins, or microbial metabolites, may affect the lung through the blood and when inflammation occurs in the lung, this in turn can affect the gut microbiota. Therefore, the modulation of gut microbiota in obese COVID-19 patients can play a key role in immunonutrition therapeutic strategy. This umbrella review seeks to answer the question of whether a nutritional approach can be used to enhance the immune system's response to obesity in obese patients affected by COVID-19.


Subject(s)
Betacoronavirus/physiology , Coronavirus Infections/complications , Coronavirus Infections/immunology , Immune System/pathology , Immune System/virology , Nutritional Physiological Phenomena , Obesity/complications , Obesity/virology , Pneumonia, Viral/complications , Pneumonia, Viral/immunology , COVID-19 , Coronavirus Infections/microbiology , Humans , Microbiota , Obesity/microbiology , Pandemics , Pneumonia, Viral/microbiology , SARS-CoV-2
14.
Eur Rev Med Pharmacol Sci ; 24(20): 10853-10859, 2020 10.
Article in English | MEDLINE | ID: covidwho-914960

ABSTRACT

OBJECTIVE: The aim of this review paper was to discuss the gut microbiota-related aspects of COVID-19 patients. We presented the faecal-oral transmission of SARS-CoV-2, gut microbiota imbalance, and fecal microbiota transplantation as a hidden source of this virus. MATERIALS AND METHODS: We analyzed the available literature (PubMed, Embase, Google Scholar databases) regarding COVID-19 and gut microbiota related aspects. RESULTS: The gastrointestinal symptoms, such as nausea, vomiting, diarrhea, abdominal discomfort/pain, may occur in these patients. Notably, these symptoms may contribute to the severity of COVID-19. Recent several studies have revealed a new SARS-CoV-2 transmission possibility, opening a fresh view on COVID-19. It is observed the possibility of SARS-CoV-2 transmission via faecal-oral route. Fecal microbiota transplantation may be a hidden source of SARS-CoV-2. Additionally, the pharmacological treatment of COVID-19 and other factors may significantly alter the composition of gut microbiota. Among others, loss of bacterial diversity, the decrease of commensal microbes as well as the increase of opportunistic pathogens are observed. CONCLUSIONS: The alterations of gut microbiota in COVID-19 patients consequently may lead to the development of gut dysbiosis-related diseases even after recovery from COVID-19. Therefore, it is recommended to screen stool samples taken from recovered patients at least 35 days after clearance of virus from respiratory tract. Before 35 days period, SARS-CoV-2 may still be detected in feces. It is also recommended to screen the composition as well as the activity of gut microbiota to assess its balance. In the case of gut dysbiosis, there should be introduced an appropriate method of its modulation. Additionally, all the fecal samples which are prepared for fecal microbiota transplantation should be tested for SARS-CoV-2 to provide protection for its recipients.


Subject(s)
Coronavirus Infections/microbiology , Gastrointestinal Diseases/microbiology , Gastrointestinal Tract/microbiology , Pneumonia, Viral/microbiology , COVID-19 , Diarrhea/virology , Feces/virology , Gastrointestinal Diseases/virology , Gastrointestinal Microbiome , Gastrointestinal Tract/virology , Humans , Pandemics , Severity of Illness Index , Vomiting/virology
15.
Am J Trop Med Hyg ; 103(4): 1593-1596, 2020 10.
Article in English | MEDLINE | ID: covidwho-890582

ABSTRACT

Coinfection of SARS-CoV-2/Mycobacterium tuberculosis (MTB) in patients with HIV/AIDS has not been previously reported. Here, we present two cases of coinfection of SARS-CoV-2 and MTB in patients with HIV. The first case is a 39-year-old patient who was admitted with a 7-day history of fever, myalgia, headache, and cough. The second patient is a 43-year-old man who had a 1-month history of cough with hemoptoic sputum, evolving to mild respiratory distress in the last 7 days. Both patients already had pulmonary tuberculosis and subsequently developed SARS-CoV-2 infection during the 2020 pandemic. Nonadherence to antiretroviral treatment may have been a factor in the clinical worsening of the patients.


Subject(s)
Coronavirus Infections/microbiology , Cough/microbiology , HIV Infections/microbiology , Patient Compliance/psychology , Pneumonia, Viral/microbiology , Respiratory Distress Syndrome/microbiology , Tuberculosis, Pulmonary/microbiology , Adult , Anti-HIV Agents/therapeutic use , Betacoronavirus/pathogenicity , COVID-19 , Coinfection , Coronavirus Infections/drug therapy , Coronavirus Infections/immunology , Coronavirus Infections/virology , Cough/drug therapy , Cough/immunology , Cough/virology , HIV/pathogenicity , HIV Infections/drug therapy , HIV Infections/immunology , HIV Infections/virology , Humans , Male , Mycobacterium tuberculosis/pathogenicity , Pandemics , Pneumonia, Viral/drug therapy , Pneumonia, Viral/immunology , Pneumonia, Viral/virology , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/virology , SARS-CoV-2 , Tomography, X-Ray Computed , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/virology
17.
Front Immunol ; 11: 2192, 2020.
Article in English | MEDLINE | ID: covidwho-868961

ABSTRACT

During the last years probiotics gained the attention of clinicians for their use in the prevention and treatment of multiple diseases. Probiotics main mechanisms of action include enhanced mucosal barrier function, direct antagonism with pathogens, inhibition of bacterial adherence and invasion capacity in the intestinal epithelium, boosting of the immune system and regulation of the central nervous system. It is accepted that there is a mutual communication between the gut microbiota and the liver, the so-called "microbiota-gut-liver axis" as well as a reciprocal communication between the intestinal microbiota and the central nervous system through the "microbiota-gut-brain axis." Moreover, recently the "gut-lung axis" in bacterial and viral infections is considerably discussed for bacterial and viral infections, as the intestinal microbiota amplifies the alveolar macrophage activity having a protective role in the host defense against pneumonia. The importance of the normal human intestinal microbiota is recognized in the preservation of health. Disease states such as, infections, autoimmune conditions, allergy and other may occur when the intestinal balance is disturbed. Probiotics seem to be a promising approach to prevent and even reduce the symptoms of such clinical states as an adjuvant therapy by preserving the balance of the normal intestinal microbiota and improving the immune system. The present review states globally all different disorders in which probiotics can be given. To date, Stronger data in favor of their clinical use are provided in the prevention of gastrointestinal disorders, antibiotic-associated diarrhea, allergy and respiratory infections. We hereby discuss the role of probiotics in the reduction of the respiratory infection symptoms and we focus on the possibility to use them as an adjuvant to the therapeutic approach of the pandemic COVID-19. Nevertheless, it is accepted by the scientific community that more clinical studies should be undertaken in large samples of diseased populations so that the assessment of their therapeutic potential provide us with strong evidence for their efficacy and safety in clinical use.


Subject(s)
Bacteria/immunology , Betacoronavirus/immunology , Coronavirus Infections , Gastrointestinal Microbiome/immunology , Pandemics , Pneumonia, Viral , Probiotics/therapeutic use , Bacterial Adhesion/immunology , Brain/immunology , Brain/microbiology , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/microbiology , Coronavirus Infections/therapy , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , Pneumonia, Viral/microbiology , Pneumonia, Viral/therapy , SARS-CoV-2
20.
Medicine (Baltimore) ; 99(38): e21617, 2020 Sep 18.
Article in English | MEDLINE | ID: covidwho-787417

ABSTRACT

BACKGROUND: The study aims to evaluate the efficacy and safety of probiotic therapy for coronavirus disease 2019 with diarrhea. METHODS: The following electronic bibliographic databases will be searched to identify relevant studies from December 2019 to December 2020: MEDLINE, PubMed, Embase, the Cochrane Central Register of Controlled Trials, China National Knowledge Infrastructure, Chinese Technical Periodicals, Wan-fang data, Chinese Biological Medicine Database, and other databases. The search results will not be restricted by language, all included articles were randomized controlled trial. Two independent researchers will conduct article retrieval, de-duplication, filtering, quality assessment, and data analysis through the Review Manager (V.5.3). Meta-analysis, subgroup analysis and/or descriptive analysis were performed on the included data. RESULTS: High-quality synthesis and/or descriptive analysis of current evidence will be provided from outcomes. CONCLUSION: This study will provide the evidence of whether probiotics is an effective and safe intervention for coronavirus disease 2019 with diarrhea.PROSPERO registration number: CRD42020192657.


Subject(s)
Betacoronavirus , Coronavirus Infections/microbiology , Diarrhea/therapy , Pneumonia, Viral/microbiology , Probiotics/therapeutic use , COVID-19 , Coronavirus Infections/complications , Diarrhea/microbiology , Humans , Meta-Analysis as Topic , Pandemics , Pneumonia, Viral/complications , Research Design , SARS-CoV-2 , Systematic Reviews as Topic , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL